In the given figure, ∠BCA=∠RPQ=15∘. Then ∠PQR is
45°
In ΔABC and ΔPQR, we have,
∠BCA=∠RPQ=15∘ [given]
BC=PR=1 km [given]
AC=PQ=1.3 km [given]
thus, ΔACB≅ΔQPR by SAS congruency.
Thus, ∠PQR=∠BAC [CPCTE]
Along the horizontal line through point A, we have,
90∘+∠BAC+45∘=180∘
or, ∠BAC=180∘−45∘−90∘
thus, ∠PQR=∠BAC=45∘