In the given figure, AX : XB = 3 : 5 and XY || BC.
Then, the ratio of the areas of trapezium XBCY and triangle ABC is
55:64
We are given in the ΔABC, AX : XB =3 : 5 and XY || BC.
Let AX = 3x and XB = 5x
∴AB=3x+5x=8x.
Now in ΔABC and ΔAXY,
∠ABC =∠AXY (corresponding angles)
∠A=∠A (common)
∴ΔABC∼ΔAXY (by AA similarity citerion)
So, we have
area(ΔABC)area(ΔAXY)=AB2AX2=(8x3x)2=64x29x2 or 649 ....... (i)
Subtracting 1 from each side we get,
area(ΔABC)area(ΔAXY)−1=649 - 1
⇒area(ΔABC)−areaΔAXYareaΔAXY=64−99
⇒area of trapezium XBCYareaΔAXY=559 ....... (ii)
Dividing equation (ii) by equation (i) we get,
∴ area of trapezium XBCY : area of ΔABC=55:64