In the given figure, BD = AD and DC = AC, If ∠ABC=35∘, then x∘ =
40∘
In Δ ABD––––––––––––
(i) AD = BD ...(given)
(ii) ∴∠DBA=∠BAD=35∘... (base angles of an isosceles Δ)
(iii) ∴∠ADC=70∘... (exterior angle theorem)
In Δ ADC––––––––––––
(iv) DC = AC...(given)
(v) ∴∠CDA=∠DAC=70∘... (base angles of an isosceles Δ)
(vi) ∴∠ACD=180∘−(70∘+70∘)... (Sum of LS of a Δ)
=180∘−140∘
= 40∘