In the given figure, chords \(AB=CD,~\angle COD=60^\circ\), and \(\angle AOD=170^\circ\).
Find the value of \(\angle BOC\).
We know that equal chords of a circle subtend equal angles at the centre.
⇒∠AOB=∠COD=60∘
Since, the central angle of a circle is 360∘.
So, ∠AOB+∠BOC+∠COD+∠AOD=360∘
⇒60∘ +∠BOC+60∘ +170∘ =360∘
⇒290∘ +∠BOC=360∘
⇒∠BOC=360∘ −290∘ =70∘