In the given figure, D is the midpoint of side BC and AE ⊥ BC. If BC = a, AC = b, AB = c, ED = x, AD = p and AE = h, prove that
(i) b2=p2+ax+a24
(ii) c2=p2−ax+a24
(iii) (b2+c2)=2p2+12a2
(iv) (b2−c2)=2ax
Given: D is the midpoint of side BC, AE ⊥ BC,
BC = a, AC = b, AB = c, ED = x, AD = p and AE = h
In ΔAEC, ∠AEC=90o
AD2=2AE2+ED2 (by Pythagoras theorem)
⇒ p2=h2+x2
(i) In ΔAEC, ∠AEC=90o
b2=h2+(x+a2)2
=(h2+x2)+ax+a24
=p2+ax+a24
Therefore, b2=p2+ax+a24——- (1)
(ii) In ΔABE, ∠ABE=90o
AB2=AE2+BE2 (by Pythagoras theorem)
⇒c2=h2+(a2−x)2...(2)
= (h2+x2)−ax+a24
= p2−ax+a24
Hence, c2=p2−ax+a24
(iii) Adding (1) and (2), we get:
b2+c2=p2+ax+a24+p2−ax+a24
(b2+c2)=2p2+12a2
(iv)
Subtracting (2) from (1), we get:
b2−c2=p2+ax+a24−(p2−ax+a24)
=p2+ax+a24−p2+ax−a24
(b2−c2)=2ax