1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Locus of the Points Equidistant From a Given Point
In the given ...
Question
In the given figure
D
B
⊥
B
C
,
D
E
⊥
A
B
and
A
C
⊥
B
C
. Prove that
B
E
D
E
=
A
C
B
C
Open in App
Solution
l
e
t
∠
A
B
C
=
θ
−
(
1
)
⟹
∠
D
B
E
=
90
−
θ
I
n
△
D
B
E
∠
B
D
E
+
∠
D
E
B
+
∠
D
B
E
=
180
∘
⟹
∠
B
D
E
=
180
−
90
−
(
90
−
θ
)
=
θ
−
(
2
)
I
n
△
D
B
E
&
△
A
B
C
:
⟹
∠
D
E
B
=
∠
A
C
B
=
90
∘
(
g
i
v
e
n
)
∠
B
D
E
=
∠
A
B
C
(
f
r
o
m
(
1
)
&
(
2
)
)
⟹
△
D
B
E
∼
△
A
B
C
⟹
D
E
B
E
=
A
C
B
C
Suggest Corrections
2
Similar questions
Q.
In the given figure, DB ⊥ BC, DE ⊥ AB and AC ⊥ BC.
Prove that
B
E
D
E
=
A
C
B
C
.