Step
1 : Finding all possible pairs of similar triangles
Given:
DE||BC
In
ΔADE and
ΔABC,
∠ADE=∠ABC [Corresponding angles]
∠AED=∠ACB [Corresponding angles]
Therefore, by
AA criterion,
ΔADE ∼
ΔABC.
In
ΔADM and
ΔABN,
∠ADM=∠ABN [Corresponding angles]
∠DAM=∠BAN [Common angle]
Therefore, by
AA criterion,
ΔADM ∼
ΔABN.
In
ΔAME and
ΔANC,
∠AME=∠ANC [Corresponding angles]
∠MAE=∠NAC [Common angle]
Therefore, by
AA criterion,
ΔAME ∼
ΔANC.
So, all possible pairs of similar triangles are
ΔADM ∼
ΔABN,ΔAME ∼
ΔANC and
ΔADE ∼
ΔABC.
Step
2 : Find lengths of
ME and
DM
Given:
AE=15 cm,EC=9 cm,
NC=6 ~cm,BN=24 ~cm).
We know,
ΔADM ∼
ΔABN,
ΔAME ∼
ΔANC,
ΔADE ∼
ΔABC.
Therefore,
⇒ADAB=DMBN=AMAN…(I)
⇒AMAN=MENC=AEAC…(II)
⇒ADAB=DEBC=AEAC…(III)
On comparing
(I),(II) and
(III), we get;
⇒MENC=DMBN=AEAC
⇒ME6=DM24=1515+9 [Since, AC=AE+EC]
⇒ME6=DM24=1524
Therefore,
⇒ME6=1524
⇒ME=6×1524
⇒ME=3.75 cm and
⇒DM24=1524
DM=24×159
DM=15 cm
Hence, lengths of
ME and
DM are
3.75 cm and
15 cm respectively.