In △s, ABC and ADE,
∠BAC=∠DAE(Common)
∠ADE=∠ABC(Corresponding angles of parallel lines)
∠AED=∠ACB(corresponding angles of parallel lines)
Therefore, △ABC∼△ADE
For similar triangles,
ratio of area of triangles = ratio of square of corresponding sides
Hence, Ar.△ADEAr.△ABD=DE2BC2
Ar.△ADEAr.△ABD=3×35×5
Ar.△ADEAr.△ADE+Ar.DBCE=9×25
25(Ar.△ADE)=9(Ar.△ADE)+9(Ar.DBCE)
16(Ar.△ADE)=9(Ar.DBCE)
Ar.△ADEAr.DBCE=916