In the given figure, DE||BC such that AD = x cm, DB = (3x + 4) cm, AE = (x + 3) cm and EC = (3x + 19) cm. Find the value of x.
(3 Marks)
Triangle ABC, DE || BC, so by Basic Proportionality theorem,
ADDB = AEEC (1 Mark)
Substituting the values, we get,
x3x+4 = x+33x+19 (1 Mark)
By cross multiplying, we get,
x(3x+19)=(x+3)(3x+4)
3x2+19x=3x2+4x+9x+12
19x−13x=12
6x=12
x=2 (1 Mark)