In the given figure, ΔABC is inscribed in a circle. The bisector of ∠BAC meets BC at D and the circle at E. If EC is joined then ∠ECD=30o. Find ∠BAC.
A
30o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
40o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
50o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
60o
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is C60o Given−ΔABCisinscribedinacircle.Theangularbisectorof∠BACmeetsBCatDandthecircleatE.ECisjoined.∠ECD=30o.Tofindout−∠BAC=?Solution−WejoinEB.ThechordEBhassubtended∠ECD&∠EABtothecircumferenceofthegivencircleatC&Arespectively.So∠ECD=∠EAB=30o.sincetheangles,subtendedbyachordofacircletodifferentpointsofthecircumfereceofthesamecircle,areequal.ButADistheangularbisectorof∠BAC.∴∠EAB=∠EAC=30o.∴∠EAB+∠EAC=∠BAC.⟹∠BAC=30o+30o=60o.Ans−OptionC.