In the given figure, ΔMNO is a right-angled triangle. Its legs are 6 cm and 8 cm long. Length of perpendicular NP on the side MO is
(a) 4.8 cm (b) 3.6 cm (c) 2.4 cm (d) 1.2 cm
Open in App
Solution
Given, ΔMNO is a right angled triangle. So, according to Pythagoras theorem, MO2=MN2+NO2=62+82=36+64 ⇒MO2=100⇒MO=√100 ⇒MO=10cm ∴AreaofΔMNO=12×Base×Height ⇒12×MN×NO=12×MO×NP ⇒12×6×8=12×10×NP ⇒NP=245 ⇒NP=4.8cm