In the given figure, ΔXYZ is inscribed in a circle with centre O. If the length of chord YZ is equal to the radius of the circle OY then ∠YXZ=
A
60o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
30o
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
80o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
100o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B30o Given−OisthecentreofacircleinwhichΔXYZhasbeeninscribed.TheradiusOY=YZ.Tofindout−∠YXZ=?Solution−InΔOYZOY=OZ(radiiofthesamecircle).ButOY=YZ.∴OY=OZ=YZ.SoΔOYZisequiangular.∴Eachangle=60o.So∠YOZ=60o.NowthechordYZsubtends∠YOZtothecentreand∠YXZtothecircumferenceatX.∴∠YXZ=12∠YOZ=12×60o=30o.Ans−OptionB.