In the given figure, ∠DFE =90∘, FG⊥ED, If GD=8, FG=12, find (i) EG (ii) FD and (iii) EF
We know that,
In a right-angled triangle, the perpendicular segment to the hypotenuse from the opposite vertex is the geometric mean of the segments into which the hypotenuse is divided.
i.e GF2=EG×GD
Here, seg GF⊥ED
∴ GF2=EG×GD
⇒122=EG×8
⇒144=EG×8
⇒ EG=1448
⇒ EG=18
Hence, EG=18.
Now,
According to Pythagoras theorem, in ∆DGF
DG2+GF2=FD2 [Using Pythagoras theorem ]
⇒ 82+122=FD2
⇒ 64+144=FD2
⇒ FD2=208
⇒ FD=√208=14.42
In ∆EGF, we have
EG2+GF2=EF2 [Using Pythagoras theorem ]
⇒ 182+122=EF2
⇒ 324+144=EF2
⇒ EF2=468
⇒ EF=√468=21.63 [Taking square root both sides]
Hence, EG=18, FD=14.42EF=21.63.