Construction:
Draw DE⊥AC and BF⊥AC.
In △DEO and △BFO
∠DEO=∠BFO ....By construction
∠DOE=∠BOF ....Vertically opposite angles
OD=OB .....Given
△DOE≅△BOF ...SAA test of congruence ....(1)
∴DE=BF .... CSCT ....(2)
and
OE=OF ... CSCT ....(3)
In △DCE and △BFA
∠DEC=∠BFA ..... By construction
DC=AB ....Given
DE=BF ....From (2)
△DEC≅△BFA .....(RHS) Right Hypotenuse Side test ....(4)
∴EC=AF ......C.S.C.T. ....(5)
Similarly, we can prove △DOA≅△BOC ....(6)
Adding (1) and (2), we get
OE+EC=OF+AF
∴OC=OA .....(7)
(i) Adding (1) & (4), we get,
A(△DOE)+A(△DEC)=A(△BOF)+A(△BFA)
∴A(△DOC)=A(△BOA) ....(8)
(ii) Adding (6) and (8), we get
A(△DOC)+A(△DOA)=A(△BOA)+A(△BOC)
⇒A(△ACD)=A(△ACB)
(iii) So, from (7) and given,
□ABCD is a parallelogram .....(Diagonals bisect each other)
and DA∥CB ....Opp. sides of parallelogram are parallel to each other