Angle Subtended by an Arc of a Circle on the Circle and at the Center
In the given ...
Question
In the given figure, I is the incentre of ΔABC. AI produced meets the circumcircle of ΔABC at D; ∠ABC=55o and ∠ACB=65o. Then (i) ∠BCD (ii) ∠CBD (iii) ∠DCI (iv) ∠BIC are respectively:
A
50o,20o,32.5o&240o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
30o,30o,62.5o&120o
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
35o,35o,82.5o&100o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
40o,20o,32.5o&150o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D30o,30o,62.5o&120o Given−TheΔABC,whoseincentreisI,hasbeeninscribedinacicle.AIisproducedtomeetthecircumferenceatD.BD&DChavebeenjoined.∠ABC=55o&∠ACB=65o.Tofindout−(i)∠BCD=?(ii)∠CBD=?(iii)∠DCI=?(iv)∠BIC=?Solution−∠ABC=∠ADC=55o[sinceboththeangleshavebeensubtendedbythechordACtothecircumferenceatB&D].Also,∠ACB=∠ADB=65o[sinceboththeangleshavebeensubtendedbythechordABtothecircumferenceatC&D].So,∠BDC=∠ADC+∠ADB=55o+65o=120o.Now,reflex∠BIC=2∠BDC(sincereflex∠BIC&∠BDCareanglesatthecentre&angleatthecircumferenceatDsubtendedbythechordBC).∴reflex∠BIC=2×120o=240o⟹∠BIC=360o−240o=120o.Bythesamereasoning∠BAC=12×∠BIC=12×120o=60o.Again,IistheincentreofΔABC.∴AI,BI&CIareangularbisectorof∠BAC,∠ABC&∠ACBrespectively.∴∠BAI=12×∠BAC=12×60o=30o=∠CAI.So,∠BCD=∠BAI=30o[since∠BCD&∠BAIareanglesatthecentre&angleatthecircumferenceatAsubtendedbythechordBD].Bythesamereasoning∠CBD=∠CAI=30o.Again,CIistheangularbisectorof∠ACD.∴∠BCI=∠ACI=12×65o=32.5o.∴∠DCI=∠BCD+∠BCI=32.5o+30o=62.5o.So∠BCD,∠CBD,∠DCI&∠BICare30o,30o,62.5o&120orespectively.Hence,optionBiscorrect.