wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the given figure, I is the incentre of ΔABC. AI produced meets the circumcircle of ΔABC at D; ABC=55o and ACB=65o. Then (i) BCD (ii) CBD (iii) DCI (iv) BIC are respectively:
243839_58687d10638c47d4b2f5b7c1f5730ac1.png

A
50o,20o,32.5o&240o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
30o,30o,62.5o&120o
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
35o,35o,82.5o&100o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
40o,20o,32.5o&150o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D 30o,30o,62.5o&120o
GivenTheΔABC,whoseincentreisI,hasbeeninscribedinacicle.AIisproducedtomeetthecircumferenceatD.BD&DChavebeenjoined.ABC=55o&ACB=65o.Tofindout(i)BCD=?(ii)CBD=?(iii)DCI=?(iv)BIC=?SolutionABC=ADC=55o[sinceboththeangleshavebeensubtendedbythechordACtothecircumferenceatB&D].Also,ACB=ADB=65o[sinceboththeangleshavebeensubtendedbythechordABtothecircumferenceatC&D].So,BDC=ADC+ADB=55o+65o=120o.Now,reflexBIC=2BDC(sincereflexBIC&BDCareanglesatthecentre&angleatthecircumferenceatDsubtendedbythechordBC).reflexBIC=2×120o=240oBIC=360o240o=120o.BythesamereasoningBAC=12×BIC=12×120o=60o.Again,IistheincentreofΔABC.AI,BI&CIareangularbisectorofBAC,ABC&ACBrespectively.BAI=12×BAC=12×60o=30o=CAI.So,BCD=BAI=30o[sinceBCD&BAIareanglesatthecentre&angleatthecircumferenceatAsubtendedbythechordBD].BythesamereasoningCBD=CAI=30o.Again,CIistheangularbisectorofACD.BCI=ACI=12×65o=32.5o.DCI=BCD+BCI=32.5o+30o=62.5o.SoBCD,CBD,DCI&BICare30o,30o,62.5o&120orespectively.Hence,optionBiscorrect.
306761_243839_ans_4bf4100123a1450fb0be32c698908fab.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Circles and Quadrilaterals - Theorem 8
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon