Relation between Inradius and Perimeter of Triangle
In the given ...
Question
In the given figure, I is the incentre of ΔABC. BI when produced meets the circumcircle of ΔABC at D. Given ∠BAC=55o,∠ACB=65o. Calculate (i) ∠DCA (ii) ∠DAC (iii) ∠DCI (iv) ∠AIC
Open in App
Solution
Join IA,IC and CD.
(i) IB is bisector of ∠ABC
∠ABD=12∠ABC=12(180∘−65∘−55∘)=30∘
∠DCA=∠ABD=30∘ -----Angles in the same segment
(ii) ∠DAC=∠CBD=30∘ -----Angles in the same segment
(iii) ∠ACI=∠ACB2=65∘2=32.5∘ -----CI is the angular bisector of ∠ACB
∴∠DCI=∠DCA+∠ACI=30∘+32.5∘=62.5∘
(iv) ∠IAC=∠BAC2=55∘2=27.5∘-----AI is the angular bisector of ∠BAC