The correct option is A 30∘
Given exterior ∠A = 140
Hence, ∠BAC=180−140=40
Since, AB=AC, ∠ABC=∠ACB
In triangle ABC, ∠ABC=180−402 =70
Since, HK∥BC,
∠AHK=∠AKH=∠ABC=70
∠AKH+∠HKC=180
∠HKC=110
Since, CH=CB
∠BHC=∠ABC=70
∠BHC+∠AHK+∠CHK=180
∠CHK=180−140=40
Now, in triangle CHK
∠CHK+∠HKC+∠HCK=180
∠HCK=180−150=30.