Given ABCD is parallelogram.
Let the diagonal BD divides parallelogram ABCD into 2 triangles.
i.e., Δ ABD; Δ BCD
Area of ABD+ Area of BCD
=Area of ABCD
∵ ABD=BCD
∴2(Area of BCD)= Area of ABCD ……….(1)
'E' is M.P of BC, so DE divides Δ BCD into 2 equal triangles
i.e., ΔBED & Δ DEC
Area of ΔBCD= Area of ΔBED+ Area of Δ DEC.
Area of ΔBCD=2(Area of ΔDEC)
By (1)
2[2(Area of DEC)]= Area of parallelogram ABCD
4(Area of DEC)=Area of ABCD
∴ Area of ΔDEC=14(Area of parallelogram ABCD).