In the given figure, if ∠ADE = ∠B, AD = 3.8 cm, AE = 3.6 cm, BE = 2.1 cm and BC = 4.2 cm, find DE.
Given:
∠ADE = ∠B
AD = 3.8 cm, AE = 3.6 cm,
BE = 2.1 cm and BC = 4.2 cm
Let length of DE be x.
Now, in ∆ADE and ∆ABC,
∠ADE = ∠B (given)
∠A = ∠A (common)
∴ ∆ADE ∼ ∆ABC (AA similarity criterion)
⇒ ADAB=DEBC
(corresponding sides of similar triangle are in same ratio)
ADAE+EB=x4.2
3.83.6+2.1=x4.2
3.85.7=x4.2
x = 2.8
⇒ DE = 2.8 cm