The correct option is D
30∘
Given:∠ACB∠ABC=14.........(i)
Angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.
∴∠AOB=2∠ACB⇒∠ACB=60∘2=30∘…..(ii) From (i), we get∠ABC=4∠ACB=4×30∘ [From (ii)] =120∘…..(iii)Now, OA=OB=Radii⇒∠OAB=∠OBAIn ΔOAB, by Angle sum property,∴∠OAB+∠OBA+60∘=180∘⇒2∠OBA=120∘(∵∠OAB=∠OBA)⇒∠OBA=60∘…..(iv)Now, ∠OBC=∠ABC–∠OBA=120∘–60∘=60∘ [From (iii) and (iv)] InΔABC, by Angle sum property,∠CAB+∠ABC+∠ACB=180∘⇒∠CAB+120∘+30∘=180∘[From (ii) and (iii)]⇒∠CAB=180∘–150∘=30∘…..(v)∴∠OAD=∠OAB–∠CAB=60∘–30∘=30∘ [From (iv) and (v)]
Hence, the correct answer is option (d).