Given,
AC=8 cm,AD=3 cm and
∠ACB=∠CDA From the figure,
∠CDA=90∘ ∴∠ACB=90∘ In right angled
ΔADC,
AC2=AD2+CD2 (by using pythagoras theorem)
⇒(8)2=(3)2+(CD)2 ⇒64−9=CD2 ⇒CD=√55 cm In
ΔCDB and
ΔADC,
∠BDC=∠ADC [each 90∘] ∠DBC=∠DCA [each equal to 90∘−∠A] ∴ΔCDB∼ΔADC Then,
CDBD=ADCD ⇒CD2=AD×BD ∴BD=CD2AD=(√55)23=553 cm