In the given figure, if ∠ACB=∠CDA,AC=8cm and AD=3cm, then find BD.
Given:
AC=8 cm,AD=3 cm and ∠ACB=∠CDA
From the figure,
In ΔADC and ΔACB
∠A=∠A [Since, common angle]
(∠ACB=∠ADC [Since, given]
So, by A.A. Similarity criterion,
ΔADC∼ΔACB
⇒ Corresponding sides are in the same ratio.
⇒ACAD=ABAC
⇒8 cm3 cm=AB8 cm
⇒83×8 cm=AB
⇒AB=643 cm ---(1)
Now, from the figure,
BD=AB−AD
⇒BD=643 cm−3 cm
⇒BD=64−93 cm
⇒BD=553 cm
∴BD=1813 cm