Now, ∠ACE=43o and ∠CAF=62o[given]
In ΔAEC
∴∠ACE+∠CAE+∠AEC=180o
43o+62o+∠AEC=180o
105o+∠AEC=180o
∠AEC=180o−105o=75o
Now, ∠ABD+∠AED=180o
[Opposite angles of a cyclic quadrilateral and ∠AED=∠AEC]
a+75o=180o
a=180o−75o
a=105o
∠EDF=∠BAF
∴c=62o [Angles in the alternate segments]
In ΔBAF,
a+62o+b=180o
105o+62o+b=180o
167o+b=180o
⇒b=180o−167o=13o
Hence, a=105o,b=13o and c=62o.