Step 1: Find the ∠PTR.
Given : ∠PRT = 40°, ∠RPT = 95° and ∠TSQ = 75°.
Angle sum property of triangle is, the sum of all three angles is equal to 180°
∠PRT + ∠RPT + ∠PTR = 180 (Angle sum property of triangle)
∠PTR = 180° - (40° + 95°)
∠PTR = 45°
Then, ∠STQ = ∠PTR = 45° (vertically opposite angle)
Step 2: Find the ∠SQT .
Apply angle sum property again in ΔSQT.
Dictate and write:
∠STQ + ∠TSQ + ∠SQT = 180°
∠SQT = 180° - (45° + 75°)
∠SQT = 60°
Hence ∠SQT is 60°