In the given figure, if the angle between two radii of a circle is 120∘, then find ∠PAO.
Given ∠POQ = 120∘
Consider quadrilateral POQA,
∠POQ + ∠OQA + ∠QAP + ∠APO = 360∘ -------(1)
[By Theorem - The tangent at any point of a circle is perpendicular to the radius through the point of contact]
So, ∠OQA = ∠APO = 90∘
On substituting these values in (1) we get,
⇒ 120∘ + 90∘ + ∠QAP + 90∘ = 360∘
⇒ ∠QAP = 360∘ - 120∘ - 90∘ + 90∘
⇒ ∠QAP = 60∘
Draw a line joining point A and O.
[By Theorem - The centre of a circle lies on the bisector of the angle between two tangents drawn
from a point outside it]
so, line AO bisects ∠QAP
∴ ∠PAO = ∠QAO
So, ∠QAP = ∠PAO + ∠QAO
⇒ ∠QAP = 2 × ∠PAO
⇒ 60∘ = 2 × ∠PAO
⇒ ∠PAO = 60∘2
⇒ ∠PAO = 30∘