In the given figure, if the bisectors of exterior angle ∠BCE and ∠CBD at I, then ∠BIC=
90∘−∠A2
We know, ∠A+∠B+∠C=180∘...... (Sum of ∠s of a Δ)
∴∠B+∠c=180−∠A.......(i)
Also, ∠BCE=180∘−∠C and ∠CBD=180−∠B
∴∠BCI=180−∠c2=90∘−∠c2... (ii)
∠CBI=180−∠B2=90−∠B2... (iii)
In Δ BCI–––––––––––
∠BIC+∠BCI+∠CIB=180∘... (Sum of ∠s of a Δ)
∴∠BCI=180−(90−∠c2)−(90−∠B2)... (from (ii) and (iii))
=180−(180−∠B2−∠c2)
∠BIC=180−180+(∠B+∠C2)
=180∘−∠A2......from (i)
=90−∠A2