In the given figure, l ||m in and a transversal I cuts them. If ∠1:∠2=2:3, find the measure of each of the marked angles.
Let ∠1 = 2 k and ∠2 = 3k , where k is some constant.
Now, ∠1 and ∠2 form a linear pair.
∴ ∠1 + ∠2 = 180
⇒ 2k + 3 k = 180
⇒ 5k = 180
⇒ k = 36
∴ ∠1 = 2k = 2 × 36 = 72
∠2 = 3k = 3 × 36 = 108
Now,
∠3 = ∠1 = 72 (Vertically opposite angles)
∠4 = ∠2 = 108 (Vertically opposite angles)
It is given that, l || m and t is a transversal.
∴ ∠5 = ∠1 = 72 (Pair of corresponding angles)
∠6 = ∠2 = 108 (Pair of corresponding angles)
∠7 = ∠1 = 72 (Pair of alternate exterior angles)
∠8 = ∠2 = 108 (Pair of alternate exterior angles)