Question 30
In the given figure, lines PQ and ST intersect at O. If ∠POR=90∘and
x:y = 3:2, then z is equal to
(a) 126∘
(b) 144∘
(c) 136∘
(d) 154∘
Since, ∠POR,∠ROT and ∠TOQ
lies on a straight line POQ, then their sum is equal to 180∘
∴∠POR+∠ROT+∠TOQ=180∘⇒90∘+x+y=180∘→x+y=180∘−90∘⇒x+y=90∘Also x:y=3:2
Let x=3a and y=2a∴3a+2a=90∘⇒5a=90∘⇒a=90∘5=18∘
Now, x=3a=3×18∘=54∘ and y=2a=2×18∘=36∘
Since, y and z forms a linear pair,
∴ y+z=180∘⇒36∘+z=180∘⇒180∘−36∘⇒z=144∘