In the given figure, LMN is tangent to the circle with centre O. If ∠ PMN = 60∘, find ∠MOP.
120∘
∠OMN = 90∘ (Radius and tangent are perpendicular at the point of contact)
∠OMP=∠OMN - ∠PMN
∠OMP=90∘−60∘=30∘
OP = OM = Radius
Hence, ∠OMP = ∠OPM = 30∘
∠OMP + ∠OPM + ∠MOP = 180∘ (Angle sum property)
∠MOP = 180∘ - ∠OMP - ∠OPM
∠MOP = 180∘ - 30∘ - 30∘ = 120∘.