In the given figure, O is the center of the circumcircle of triangle ABC. Tangents at A and B intersect at T. If ∠ATB=80∘ and ∠AOC=130∘, Calculate ∠CAB. [4 MARKS]
Concept: 1 Mark
Application: 3 Marks
OA = OC (radius)
⇒∠OCA=∠OAC
In ΔOCA,∠OCA+∠OAC+∠AOC=180∘ (By Angle Sum Property)
2∠OAC+130∘=180∘
2∠OAC=50∘
∠OAC=25∘
We know that TA = TB
⇒∠TAB=∠TBA
In ΔATB,∠TAB+∠TBA+∠ATB=180∘ (By Angle Sum Property)
2∠TAB+80∘=180∘
2∠TAB=100∘
∠TAB=50∘
∠OAB=∠OAT−∠TAB
∠OAB=90∘−50∘
∠OAB=40∘
∠CAB=∠OAC+∠OAB
∠CAB=25∘+40∘
∠CAB=65∘