In the given figure, O is the centre of a circle and chords AC and BD intersect at E. If ∠AEB=110∘ and ∠CBE=30∘ then ∠ADB=?
(a) 70∘
(b) 60∘
(c) 80∘
(d) 90∘
ANSWER:
( c ) 80°
We have:
∠AEB+∠CEB = 180 ° (Linear pair angles)
⇒ 110 ° + ∠CEB = 180 °
⇒ ∠CEB = (180° - 110°) = 70°
In Δ CEB, we have:
∠CEB+∠EBC+∠ECB = 180° (Angle sum property of a triangle)
⇒ 70° + 30° + ∠ECB = 180°
⇒ ∠ECB = (180° - 100°) = 80°
The angles in the same segment are equal.
Thus, ∠ADB = ∠ECB = 80°