In the given figure, O is the center of a circle in which ∠OAB=20∘ and ∠OCB=50∘. Then, ∠AOC=?
(a) 50∘
(b) 70∘
(c) 20∘
(d) 60∘
The correct option is (d): 60∘
We have: OA=OB (Radii of a circle)
⇒∠OBA=∠OAB=20∘
In △OAB, we have:
∠OAB+∠OBA+∠AOB=180∘ (Angle sum property of a triangle)
⇒20∘+20∘+∠AOB=180∘
⇒∠AOB=(180∘−40∘)=140∘
Again, we have: OB=OC (Radii of a circle)
⇒∠OBC=∠OCB=50∘
In △OCB, we have:
∠OCB+∠OBC+∠COB=180∘ (Angle sum property of a triangle)
⇒50∘+50∘+∠COB=180∘
⇒∠COB=(180∘−100∘)=80∘
Since ∠AOB=140∘, we have:
∠AOC+∠COB=140∘
⇒∠AOC+80∘=140∘
⇒∠AOC=(180∘−80∘)=60∘