OT=13cm
OP and PT are radius and tangent respectively at contact point P.
∴∠OPT=90∘
So, by pythagoras theorem, in right angled ΔOPT,
PT2=OT2−OP2=132−52=169−25=144
⇒PT=12cm
AP and AE are two tangents from an external point A to a circle.
∴AP=AE
AEB is tangent and OE is radius at contact point E.
So, AB⊥OT ___(i)
So, by Pythagoras theorem, in right angled. ΔAET.
AE2=AT2−ET2
⇒AE2=(PT−PA)2−[TO−OE]2
=(12−AE)2−(13−5)2
⇒AE2=(12)2+(AE)2−2(12)(AE)−(8)2
⇒AE2−AE2+24AE=144−64
⇒24AE=80
⇒AE=8024cm
⇒AE=103cm
REF. IMAGE
In ΔTPO and ΔTQO,
OT=OT [common]
PT=QT [Tangents from T]
OP=OQ [Radii of same circle]
∴ΔTPO≅ΔTQO [By SSS criterion of congruence]
⇒∠1=∠2 ___(ii) [CPCT]
In ΔETA and ΔETB,
ET=ET [Common]
∠TEA=∠TEB=90∘ [From (i)]
∠1=∠2 [CPCT] [From (ii)]
∴ΔETA≅ΔETB [By ASA criterion of congruence]
⇒AE=BE [CPCT]
⇒AB=2AE=2×103
⇒AB=203cm
Hence, the required length is 203cm.