In the given figure, O is the centre of each one of two concentric circles of radii 4cm and 6cm respectively. PA and PB are tangents to outer and inner circle respectively. If PA=10cm, then the length of PB, up to two places of decimal is
A
13.60cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
11.60cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
10.95cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
15.23cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D 10.95cm Given−Oisthecentreoftwoconcentriccircles.Theradiusoftheoutercircleis6cmandtheradiusoftheinnercircleis4cm.PA=10cmisatangentfromapointPtotheoutercircleandPBisatangentfromthesamepointPtotheinnercircle.Tofindout−PB=?Solution−wejoinOA,OB&OP.∴OA&OBareradiithroughthepointsofcontactA&BofthetangentsPA&PBrespectively.∴OA⊥PA&OB⊥PB.i.eΔOAP&ΔOBParerighttriangleswithOPascommonhypotenuse.So,applyingPythagorastheorem,wegetOP=√OA2+AP2=√102+62cm=√136cm.AndPB=√OP2−OB2=√136−42cm=√120cm=10.95cm.Ans−OptionC.