In the given figure, O is the centre of the circle and AB is a tangent to it at point B. If ∠BDC=65∘, then find ∠BAO
40∘
Given ∠BDC=65∘ and AB is tangent to circle with centre O.
∵ OB is radius
By Theorem - Tangent is perpendicular to the radius through the point of contact.
∴OB⊥AB
⇒∠DBC=90∘
In ΔBDC,
∠DBC+∠BDC+∠BCD=180∘
90∘+65∘+∠BCD=180∘
⇒∠BCD or ∠OCE = 25∘
∵OE=OC = radius
By Theorem- Angles opposite to equal sides are equal⇒∠OEC=∠OCE=25∘
Also, ∠BOE=∠OEC+∠OCE
[Exterior angle = sum of opposite interior angles in a Δ ]
⇒∠BOE=25∘+25∘⇒∠BOE=50∘
⇒∠BOA=50∘
In ΔAOB
∠AOB+∠BAO+∠OBA=180∘
50∘+∠BAO+90∘=180∘⇒∠BAO=40∘