wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the given figure, O is the centre of the circle and ∠DAB = 50°. Calculate the values of x and y.

Open in App
Solution


O is the centre of the circle and DAB = 50°.
OA = OB (Radii of a circle)
OBA = OAB = 50°
In ΔOAB, we have:
OAB + OBA + AOB = 180°
⇒ 50° + 50° +AOB = 180°
AOB = (180° – 100°) = 80°
Since AOD is a straight line, we have:
∴ x = 180°AOB
= (180° – 80°) = 100°
i.e., x = 100°
The opposite angles of a cyclic quadrilateral are supplementary.
ABCD is a cyclic quadrilateral.
Thus, DAB + BCD = 180°
BCD = (180° – 50°) = 130°
∴ y = 130°
Hence, x = 100° and y = 130°

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Circles and Quadrilaterals - Theorem 11
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon