The correct option is
B 50o&110oGiven,
O is the centre of a circle in which a quadrilateral
ABCD has been inscribed.
Also, AB & CD are produced to meet at E.
Now, ∠BAC=140o & ∠AOD=50o.
∠BOD=180o−∠AOD...(linear pair)
⟹∠BOD=180o−140o=40o.........(i).
Since, OD and OB are the radii of the same circle, OD=OB.
i.e ΔBOD is an isosceles one with BD as base.
∴∠OBD=∠ODB
⟹∠OBD+∠ODB=2∠OBD =2∠ODB.
Then, ∠OBD+∠ODB+∠BOD=180o ...(angle sum property of triangles).
Using (i), we get,
(2∠OBD=2∠ODB)=180o−40o=140o
⟹(∠OBD=∠ODB)=70o.
Again ∠EBD=180o−∠OBD ...(linear pair)
=180o−70o=110o..........(iii).
Again ∠BAC+∠BDC=180o ...(sum of the opposite angles of a cyclic quadrilateral =180o).
⟹∠BDC=180o−∠BAC=180o−50o=130o.
So ∠ODC=∠BDC−∠ODB=130o−70o=60o.
Now we have ∠ODC+∠ODB+∠EDB=180o....(straight angle)
∴∠EDB=180o−(∠ODC+∠ODB)=180o−(60o+70o)=50o.....(iv).
So ∠EDB & ∠EBD are respectively 50o and 110o.
Hence, option B is correct.