In the given figure, O is the centre of the circumcircle ABC. Tangents at A and C intersect at P. Given angle AOB=140∘ and angle APC=80∘; find the angle BAC.
60∘
Join OC
∴ PA and PC are the tangents
∴OA⊥ and OC⊥PC
In quad APCO,
∴∠APC+∠AOC=180∘
⇒80∘+∠AOC=180∘
∴∠AOC=180∘−80∘=100∘
∠BOC=360∘−(∠AOB+∠AOC)
=360∘−(140∘+100∘)
=360∘−240∘=120∘
Now arc BC subtends ∠BOC at the circle
and ∠BAC at the remaining part of the circle
∴ ∠BAC=12∠BOC
=12×120∘=60∘