In the given figure P is a point in the interior of a llgm ABCD ,show that I) ar(APB)+ar(PCD)=12ar(ABCD) II) ar(APD)+ar(PBC)=ar(APB)+ar(PCD) [hint :through P ,drawn a line parallel to AB]
Open in App
Solution
Given: ABCD is a parallelogram. Let MN passing through P be parallel to AB.
Since, Area of triangle is half of the area of parallelogram if they lie on same base and between same parallel lines.
∴ar(△APB)=12ar(||gmABNM)....(1)
∴ar(△DPC)=12ar(||gmDCNM)....(2)
Adding equation 1 and 2, we have ,
ar(△APB)+ar(△DPC)=12ar(||gmABNM)+12ar(||gmDCNM)
⇒ar(△APB)+ar(△DPC)=12ar(||gmABCD)
Similarly, if we take XY passing through P to be parallel to AD.