wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the given figure, PAT is a tangent to the circumcircle of a ΔABC at the vertex A. A line parallel to PAT intersects the sides AB and AC at the points DandE respectively.
Prove that
ΔABCΔAED
ABAD=ACAE
328397.bmp

Open in App
Solution

Given:PATisatangenttothecircumcircleofaABCatthevertexA.AlineparalleltoPATintersectsthesidesABandACatthepointsDandErespectively.ToProof:ABCAEDABAD=ACAE.Proof:TAC=TAE=ABC....(1)[anglesinthealternatesegmentareequal]Similarly,PAB=PAD=ACB....(2)[Anglesinthealternatesegmentareequal].AsPTDEAlsoTAE=AED(alternateangles).....(3)PAD=ADE[Alternateangles].....(4)From(1)to(4),wegetABC=AEDACB=ADEABCAED[ByAAsimilarity]Sincecorrespondingsidesofsimilartrianglesareproportional.ABAE=ACADAB×AD=AC×AEHence,therequiredresultsareproved.
327345_328397_ans_42b5b5c31b184926a75d06a9ee967b9b.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Triangles and Circles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon