In the given figure POQ is a diameter of a circle with centre O and PQRS is a cyclic quadrilateral. SQ is joined. If ∠R=138o. Then ∠PQS is
A
90o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
42o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
48o
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
38o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C48o Given−POQisthediameterofacirclewithcentreO.PQRSisaquadrilateralinscribedinthegivencircle.SQhasbeenjoined.∠QRS=138o.Tofindout−∠PQS=?Solution−PQRSisacyclicquadrilateral.∴∠QPS+∠QRS=180o(sincethesumoftheoppositeanglesofacyclicquadrilateralis180o).⟹∠QPS=180o−∠QRS=180o−138o=42o.NowPQisthediameterwhichsubtends∠QPStothecircumferenceofthegivencircleatS.∴∠QPS=90osinceitistheangleinasemicircle.SoinΔPQSwehave∠QSP+∠QPS+∠PQS=180o(anglesumpropertyoftriangles).⟹∠PQS=180o−(∠QSP+∠QPS)=180o−(90o+42o)=48o.Ans−OptionC.