Question 23
In the given figure, PQ = PR, RS = RQ and ST∥QR. If the exterior ∠RPU is 140∘, then the measure of ∠TSR is
a) 55∘
b) 40∘
c) 50∘
d) 45∘
Here,
⇒∠1=180∘−140∘⇒∠1=40∘
Since, PQ = PR
∴∠Q=∠R=x [say]
In ΔPQR,∠P+∠Q+∠R=180∘ [angle sum property of a triangle]
⇒40∘+x+x=180∘⇒2x=180∘−40∘⇒2x=140∘⇒x=70∘
So, ∠Q=∠R=70∘
Given that, RS = RQ
∴∠2=∠3=70∘
In ΔSQR,∠2+∠3+∠4=180∘ [angle sum property of a triangle]
⇒70∘+70∘+∠4=180∘⇒∠4=180∘−140∘⇒∠4=40∘
Also, ST∥QR [given]
Now, ∠4=∠6=40∘ [alternate interior angles]
∴∠TSR=40∘