In the given figure, PQ, RS and UT are parallel lines.
If c=57∘anda=c3, find the value of d.
Open in App
Solution
Since, PQ||UTandPT is transversal. Therefore,∠QPT=∠UTP[alternateinteriorangles]⇒a+b=c⇒c3+b=c[∵a=c3,given]⇒b=c−c3⇒b=3c−c3⇒b=2c3=23×57∘∴b=38∘
Again, PQ||RSandPR is transversal. ∠QPR+∠PRS=180∘[co−interiorangles]⇒b+d=180∘⇒d=180∘−b⇒d=180∘−38∘[∵b=38∘]⇒d=142∘