The correct option is D AQ=PQ
We have ∠SPQ=60∘
∠P+∠Q=180∘ (adj. ∠s of a || gm are supp)
∠Q=180∘−60∘=120∘
Now PQ||SR and AP is the transversal.
∴SAP=∠APQ=30∘ (∵AP bisects ∠SPQ)
∠SPA=∠SAP⇒SA=SP (isos. Δ property) ...(i)
Also ∠RAQ=∠AQP=60∘
(PQ||SR,AQ is transversal, alt ∠s)
and ∠AQP=12∠PQR=60∘
⇒∠RQA=∠RAQ (AQ bisect ∠PQR)
⇒RA=RQ (isos. Δ property) ....(ii)
∴ from eqn. (i) and (ii)
AS=AR (∵SP=RQ, opp. side of a ||gm)
Also, in ΔARQ,∠ARQ=60∘
⇒ΔARQ is equilateral
⇒AR=RQ⇒AR=SP
Therefore, the incorrect statement is AQ=PQ.