In the given figure, PQRS is a rectangle if ∠RPQ=30∘. Then, the value of (x + y) is:
180∘
The diagonals of a rectangle bisect each other and are equal in length.
⇒OP=OQ=OR=OS
Given, ∠RPQ=∠OPQ=30∘
Since, OP=OQ⇒∠OPQ=∠OQP=30∘
All the angles of a rectangle are 90∘.
x=90∘−∠OQP=90∘−30∘=60∘
Also, ∠OQR = ∠ORQ (∵OR=OQ)
⇒∠OQR=∠ORQ=x
Now, y=∠OQR+∠ORQ=x+x
∵( In a triangle, exterior angle is equal sum interior opposite Angles)
⇒y=60+60=1200
The required sum is,
x+y=60∘+120∘=180∘