The correct option is C
3 : 2
Given that PQRT is a square.
Since diagonals of a square bisects each other at 90∘.
∴∠TOR=90∘ and OR=OT (say x)Now, in ΔTOR, by Pythagoras theorem, OR2+OT2=RT2⇒x2+x2=(16)2 (∵RT=16 cm)⇒2x2=256⇒x=8√2 cm…..(i)Now, TS=2×QR (Given)=2×8√2=16√2 cm ...(ii)Thus, AR(ΔPQR)=12×OQ×PR=12×x×2x (∵OQ=OR=OT=x)=x2=128 cm2...(iii)Also, Ar(TORS)=Ar(ΔTOR)+Ar(ΔTRS)=12×TO×OR+12×TO×TS=12×8√2×8√2+12×8√2×16√2 [From (i) and (ii)]=192 cm2 ....(iv)∴ Ar(TORS)Ar(ΔPQS)=192128=32 From(iii)and(iv)]
Hence, the correct answer is option (c).