In the given figure, PT touches the circle with centre O at point R. Diameter SQ is produced to meet the tangent TR at P.
Given ∠SPR=xo and ∠QRP=yo
prove that:
(i) ∠ORS=yo
(ii) write an expression connecting x and y.
Open in App
Solution
given- QRP=y ORP=90 (radius to tangent through pt of contact) ORP-QRP=90-y=QRO
now, QRS=90 (ANGLE IN SEMICIRCLE) QRO+ORS=QRS (90-y)+ORS=90 ORS=90-(90-y) ORS=y HENCE PROVED ii) ORS=OSR=y (ANGLES OPP.TO EQUAL SIDES-RADII) QOR=2*OSR (ANGLE SUBTENTED AT THE CENTRE BY A CHORD IS TWICE THE ANGLE SUBTENTED BY IT ON ANY OTHER PT ON THE CIRCLE) QOR=2y OQR=QPR+QRP (EXT. ANGLE PROP) OQR=x+y OQR=ORQ=x+y (ANGLES OPP. TO EQUAL SIDES) OQR+ORQ+QOR=180 (ANGLE SUM PROP) x+y+x+y+2y=180 2x+4y=180 x+2y=90