wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the given figure, the circle touches the sides of ABC BC, CA and AB at D, E and F respectively.
Show that AF+BD+CE=AE+BF+CD=12(Perimeter of ABC)

Open in App
Solution

Since lengths of the tangents from an exterior point to a circle are equal.
AF=AE
BD=BF
CE=CD
Adding equations (i),(ii) and (iii), we get
AF+BD+CE=AE+BF+CD
Now,
Perimeter of ABC=AB+BC+AC
Perimeter of ABC=(AF+FB)+(BD+CD)+(AE+EC)
Perimeter of ABC=(AF+AE)+(BF+BD)+(CD+CE)
Perimeter of ABC=2 AF+2 BD+2 CE
Perimeter of ABC=2(AF+BD+CE)
AF+BD+CE=12(PerimeterofABC)
Hence, AF+BD+CE=AE+BF+CD=12(PerimeterofABC)

1029614_1009483_ans_0704cb16571641b7bb81c9d7b94f7f07.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Tangents from a Given Point
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon