In the given figure, the circle touches the sides of △ABCBC, CA and AB at D, E and F respectively.
Show that AF+BD+CE=AE+BF+CD=12(Perimeterof△ABC)
Open in App
Solution
Since lengths of the tangents from an exterior point to a circle are equal.
AF=AE BD=BF CE=CD
Adding equations (i),(ii) and (iii), we get AF+BD+CE=AE+BF+CD Now, Perimeter of △ABC=AB+BC+AC ⇒ Perimeter of △ABC=(AF+FB)+(BD+CD)+(AE+EC) ⇒ Perimeter of △ABC=(AF+AE)+(BF+BD)+(CD+CE) ⇒ Perimeter of △ABC=2AF+2BD+2CE ⇒ Perimeter of △ABC=2(AF+BD+CE) ⇒AF+BD+CE=12(Perimeterof△ABC) Hence, AF+BD+CE=AE+BF+CD=12(Perimeterof△ABC)