In the given figure, the side BC of Δ ABC is produced to D. If the bisecter of ∠BAC meets BC at L,, then ∠ABC+∠ACD =
∠ALC
(i) ∠BAL=∠LAC=∠A2... (given AL bisects ∠A)
(ii) ∠ALC=A2+B...... (exteriar angle theorem)
(iii) ∠ACD=A+B...... (exteriar angle theorem)
(iv) ∠ABC+∠ACD=B+A+B
= A + 2B
= 2 (A2)+2B=2(A2+B)=2 ∠ALC