wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the given figure, the side QR of ΔPQR is produced to a point S. If the bisectors of ∠PQR and ∠PRS meet at point T, then prove that ∠QTR=∠QPR.

Open in App
Solution

In ΔQTR, ∠TRS is an exterior angle.

∠QTR + ∠TQR = ∠TRS

∠QTR = ∠TRS − ∠TQR (1)

For ΔPQR, ∠PRS is an external angle.

∠QPR + ∠PQR = ∠PRS

∠QPR + 2∠TQR = 2∠TRS (As QT and RT are angle bisectors)

∠QPR = 2(∠TRS − ∠TQR)

∠QPR = 2∠QTR [By using equation (1)]

∠QTR = ∠QPR


flag
Suggest Corrections
thumbs-up
24
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Properties of a Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon